2024年成考高起点《数学(理)》每日一练试题12月07日

2024-12-07 12:11:56 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题12月07日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、在△ABC中,AB=4,BC=6,∠ABC=60°,则AC=()。

  • A:128
  • B:76
  • C:
  • D:

答 案:C

解 析:已知两边及夹角用余弦定理得 AC2=62+42-2×6×4cos60°=28 ∴AC=

2、函数y=x2—2x+6在区间(-∞,1)、(1,+∞)分别()。

  • A:单调增加、单调减少
  • B:单调减少、单调增加
  • C:单调增加、单调增加
  • D:单调减少、单调减少

答 案:B

解 析:方法一:用配方法把y=x2-2x+6配成完全平方式。 y=x2-2x+6=(x-1)2+5,开口向上的抛物线顶点坐标为(1,5),可得出单调区间。 方法二:用导数判定。y’=2x-2=2(x-1)
当x<1时,y’<0,单调减少;当x>1时,y>0,单调增加。

3、已知=,则=()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:

4、设集合M={1,2,4},N={2,3,5},则集合M∪N=().

  • A:{2}
  • B:{1,2,3,4,5}
  • C:{3,5}
  • D:{1,4}

答 案:B

解 析:M∪N={1,2,4}∪{2,3,5)= {1,2,3,4,5} (答案为B)

主观题

1、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

2、试证明下列各题
(1)
(2)

答 案:(1)化正切为正、余弦,通分即可得证。 (2)

3、化简: (1)
(2)

答 案:(1) (2)

4、设(0<α<π),求tanα的值。

答 案:

填空题

1、函数(x∈R)的最小值为______。

答 案:-1

解 析:

2、在△ABC中,已知a=+,则bcosC+ccosB=______。  

答 案:

解 析:由余弦定理得,  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里