2024年成考高起点《数学(理)》每日一练试题11月25日

2024-11-25 12:04:22 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题11月25日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、某类灯泡使用时数在1000小时以上的概率为0.2,三个灯泡在使用1000小时以后最多只有一个坏的概率为()

  • A:0.008
  • B:0.104
  • C:0.096
  • D:1

答 案:B

解 析:已知灯泡使用1000小时后好的概率为0.2,坏的概率为1-0.2=0.8,则三个灯泡使用1000小时以后,可分别求得: P(没有坏的) P(一个坏的)故最多只有一个坏的概率为:0.008+0.096=0.104.  

2、函数y=lg(x2-3x+2)的定义域为()。

  • A:{x|x<1或x>2}
  • B:{x|1<x<2}
  • C:{x|x<1}
  • D:{x|x>2}

答 案:A

解 析:由x2-3x+2>0,解得x<1或x>2。答案为A。  

3、函数的定义域是()。

  • A:(-∞,0)∪[2,+∞)
  • B:[0,2]
  • C:(-∞,0)∪(2,+∞)
  • D:(0,2)

答 案:C

解 析:x2-2x>0,解得x<0或x>2.函数的定义域为(-∞,0)∪(2,+∞)。答案为C。

4、抛物线 y=ax2的准线方程是 y=2,则a=()。

  • A:
  • B:
  • C:8
  • D:-8

答 案:B

解 析:

主观题

1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

2、cos20°cos40°cos80°的值。

答 案:

3、已知am=,an=,求a3n-4m的值。  

答 案:

4、 展开式的二项式系数之和比展开式的二项式系数之和小240。 求:(1)展开式的第3项;
(2)展开式的中间项。

答 案:

填空题

1、函数y=2cosx-cos2x(x∈R)的最大值为______。  

答 案:

解 析:

2、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()  

答 案:

解 析:由于a//b,故

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里