2024年成考高起点《数学(文史)》每日一练试题11月20日

2024-11-20 12:17:26 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题11月20日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、的导数是  

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:

2、甲坛有8个小球,乙坛有4个小球,所有小球颜色各不相同,现从甲坛中取2个小球,乙坛中取1个小球,则取出3个球的不同取法共有()。

  • A:224种
  • B:112种
  • C:32种
  • D:1320种

答 案:B

解 析:C8(2)×C4(1)=112(种)。  

3、设f(x)=1-f(x)log2x函数,则f(2)=()

  • A:1
  • B:-1
  • C:2
  • D:1/2

答 案:D

解 析:在f(x)=1-flog2x中令x=2得,f(2)=1-f(2)log22→f(2)=1-f(2)→1/2

4、盒中有20节电池,其中有2节是废品,现从中取3节,其中至少有一节废品的概率是()。

  • A:
  • B:
  • C:
  • D:

答 案:A

主观题

1、已知x+x-1=,求x2+x-2的值。  

答 案:由已知,得

2、设全集U=R,集合A={x|-5<x<5},B={x|0≤x≤7},求CUA∩B.

答 案:解:全集U=R,A={x|-5<x<5},B={X|0≤x≤7},因为CuA={x|x≤-5或x≥5},所以CuA∩B={x|x≤-5或x≥5}N{x|0≤x≤7}={x|5≤x≤7},如图1—10所示。

3、设函数 (1)求;(2)求函数f(θ)最小值。

答 案:

4、若双曲线的两条准线将两个焦点的连线分成三等分,求双曲线的离心率。

答 案:设双曲线的半焦距为c,则双曲线 【考点指要】本题要求根据双曲线的焦距、离心率、准线方程三者之间的关系进行计算,属较容易题,在成人高考中常见.

填空题

1、=______。

答 案:27

解 析:

2、与已知直线7x+24y-5=0平行,且距离等于3的直线方程是______。  

答 案:7x+24y+70=0或7x+24y-80=0

解 析:设要求的直线方程为7x+24y+c=0, ∵直线7x+24y+c=0到直线7x+24y-5=0的距离等于3 ∴ ∴.C=70或-80. 故所求的直线方程为7x+24y+70=0或7x+24y-80=0

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里