2024-11-20 12:14:05 来源:吉格考试网
2024年成考高起点《数学(理)》每日一练试题11月20日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、已知tanα,tanβ是方程2x2-4x+1=0的两根,则tan(α+β)=()。
答 案:A
解 析:由已知,得tanα+tanβ==2,tanαtanβ=,所以
2、过AB(-5,0)两点直线的倾斜角为()。
答 案:C
解 析:
3、若tan(π-α)>0,且cosα>0,则α的终边在()。
答 案:D
解 析:∵tan(π-α)>0-tanα>0tanα<0,且cosα>0∴α在第四象限。
4、函数y=lg(x2-3x+2)的定义域为()。
答 案:A
解 析:由x2-3x+2>0,解得x<1或x>2。答案为A。
主观题
1、空间有四个点,如果其中任何三点不在同一直线上,可以确定几个平面?
答 案:根据公理,在所给定的四点中任取三点,可确定一个平面,由组合公式所以共可确定四个平面。
解 析:空间有n个点,如果其中任何三点不在同一直线上,可以确定个平面。
2、某气象预报站天气预报的准确率为80%,计算(1)5次预报中恰有4次准确的概率; (2)5次中至少有次准确的概率.(计算结果保留两个有效数字).
答 案: 把每次预报看做一次试验,“预报结果准确”看成事件P(A)=0.8,本题就相当于在5次独立重复试验中求A恰好发生4次(或至少4次)的概率,此题属于独立重复试验,由公式来求解。 (1)n=5;p=0.8;k=4 即恰有4次准确的概率为0.41. (2)5次至少有4次准确的概率,就是5次中恰有4次准确的概率与5次预报中都准确的概率的和,即 即至少有4次准确的概率为0.74。
3、求函数上的最大值以及取得这个最大值的x。
答 案:.1 函数取最大值,即y最大值=。
4、设分别讨论x→0及x→1时f(x)的极限是否存在?
答 案:∴f(x)在x=0处极限不存在 同理f(x)在x=1处极限存在
填空题
1、一个问题在1小时内,甲能独立解决的概率是0.5,乙能独立解决的概率是0.4,两人在1小时内解决问题的概率是______。
答 案:0.7
解 析:设事件A为两人在1小时内解决问题,即1小时内至少有一人能解决问题,事件B为甲在1小时内解决问题,事件C为乙在1小时内解决问题,事件B、C是相互独立事件,事件A的对立事件 互为在1小时内两个人都没有解决问题,所以 P(A)=1-P()=1-P(·)=1-P()·P() =1-(1-0.5)×(1-0.4)=1-(0.5×0.6)=1-0.3=0.7
2、设a是第一象限角,则是第______象限角,2α是第______象限角。
答 案: 一、三,一、二
解 析: