课程
题库
分享到空间
分享到新浪微博
分享到QQ
分享到微信
2024年成考高起点《数学(文史)》每日一练试题11月12日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、设甲:
;乙:
.则()
- A:甲是乙的必要条件但不是充分条件
- B:甲是乙的充分条件但不是必要条件
- C:甲是乙的充要条件
- D:甲既不是乙的充分条件也不是乙的必要条件
答 案:A
解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.
2、甲、乙两个人各进行一次射击,甲击中目标的概率是0.2,乙击中目标的概率是0.7,则甲、乙两人都击中目标的概率是()。
答 案:A
解 析:本题属于相互独立事件同时发生的概率,设A为甲击中目标的事件,B为乙击中目标的事件,P(A)=O.2,P(B)=0.7,P(A·B)=P(A)·P(B)=O.2×0.7=0.14,故应选A。
3、设f(x)=x3+4x2+11x+7,则f(x+1)=()。
- A:x3+7x2+22x+23
- B:x3—7x2+22x+23
- C:x3+7x2-22x+23
- D:x3-7x2-22x+23
答 案:A
解 析:f(x+1)
=(x+1)3 +4(x+1}2+11(x+1)+7
=x3+3x2+3x+1+4x2+8x+4+11x+11+7
=x3+7x2+22x+23
综上所述,答案:x3+7x2+22x+23
4、已知a>b,则下列等式恒成立的是()。
- A:a²>b²
- B:
>1 - C:

- D:5a>5b
答 案:D
主观题
1、求函数
(x∈R)的最大值与最小值。
答 案:设sinx+cosx=t,则(sinx+cosx)2=t2,1+2sinxcosx=t2,sinxcosx=
于是转化为求
的最值。
由所设知
上为增函数,故g(t)的最大值为
最小值为
2、设
(0<α<π),求tanα的值。
答 案:
3、设3a=5b=15,求a-1+b-1的值。
答 案:由3a=15,得a=log315;又由5b=15,得b=log515。 因此a-1+b-1=
=log153+log155=1。
解 析:过程中应用了换底公式的推论,即
4、设椭圆的中心是坐标原点,长轴在x轴上,离心率
已知点P
到圆上的点的最远距离是
求椭圆的方程
答 案:由题意,设椭圆方程为
由
设P
点到椭圆上任一点的距离为 d,
则在y=-b时,
最大,即d也最大。

填空题
1、
答 案:
解 析:
【考点指要】本题主要考查三角函数的最大值、最小值及值域的求法,解题时需要灵活运用诱导公式、二倍角公式以及辅助角公式,当函数可以化
2、某学科的一次练习中,第一小组5个人成绩如下(单位:分):98,89,70,92,90,则分数的样本方差为__________.
答 案:88.96
解 析:平均分
【考点指要】本题主要考查样本的平均数与方差的计算.对于统计问题,只需记清概念和公式,计算时不出错即可.
温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!