2024年成考高起点《数学(理)》每日一练试题11月08日

2024-11-08 12:15:33 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题11月08日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、若向量a=(1,-1),b=(1,x),且|a+b|=2,则x=()。

  • A:-4
  • B:-1
  • C:1
  • D:4

答 案:C

解 析:解得x=1 本题主要考查的知识点为向量的加法和模。  

2、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:求cos可直接用公式cos a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,  

3、()。

  • A:(-5,0),(5,0)
  • B:(0,-5),(0,5)
  • C:
  • D:

答 案:C

解 析:参数方程化成标准方程为

4、设,则 ()。

  • A:sina+cosa
  • B:—sing—cosa
  • C:sing—coso
  • D:cosa—sina

答 案:D

解 析:本题主要考查的知识点为三角函数的运算.当时,

主观题

1、求下列函数的最大值、最小值和最小正周期: (1)(2)y=6cosx+8sinx

答 案:  

2、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  

答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函数当a<0时有最大值 是开口向下的抛物线,有最大值 法二:用导数来求解 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294  

3、已知tan2θ=2tan2ψ+1,求cos2θ+sin2ψ的值。

答 案:由已知,得

4、已知x+x-1=,求x2+x-2的值。

答 案:由已知,得

填空题

1、曲线y=在点(1,1)处的切线方程是______。

答 案:2x+y-3=0

解 析:本题主要考查的知识点为切线方程 由题意,该切线斜率, 又过点(1,1),所以切线方程为y-1=-2(x-1)

2、y=cos22x的最大值是______,最小值______,周期T=______。  

答 案:1;0;

解 析:,最大值为,最小值为

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里