2024年成考高起点《数学(理)》每日一练试题11月04日

2024-11-04 12:00:17 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题11月04日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、已知,则cotθ的值是()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:从已知式两边平方得到,

2、5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法  

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:将院校看成元素,高中生看成位置,由重复排列的元素、位置的条件口诀: “元素可挑剩,位置不可缺”,重复排列的种数共有种,即将元素的个数作为底数,位置的个数作为指数.即:元素(院校)的个数为 3,位置(高中生)的个数为5,共有种。  

3、设f(x)是以7为周期的偶函数,且f(-2)=5,则f(9)=()。

  • A:-5
  • B:5
  • C:-10
  • D:10

答 案:B

解 析:因为f(x)是偶函数,所以f(2)=f(-2)=5,又因为f(x)是以7为周期的函数,则f(9)=f(7+2)=f(2)=5。答案为B。

4、若tan(π-α)>0,且cosα>0,则α的终边在()。

  • A:第一象限
  • B:第二象限
  • C:第三象限
  • D:第四象限

答 案:D

解 析:∵tan(π-α)>0-tanα>0tanα<0,且cosα>0∴α在第四象限。  

主观题

1、已知tan2θ=2tan2ψ+1,求cos2θ+sin2ψ的值。

答 案:由已知,得

2、已知A(1,4),B(3,8),C(4,10)。求证A、B、C三点共线。  

答 案:

3、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

4、已知数列{an}中,a1=2, (Ⅰ)求数列{an}的通项公式; (Ⅱ)求数列{an}前5项的和 S5

答 案:解:

填空题

1、若P(3,2)是连接P1(2,y)和P2(x,6)线段的中点,则x=______,y=______。  

答 案:x=4,y=-2  

解 析:

2、已知sin2θ+1=cos2θ,则的值等于______。  

答 案:

解 析:由已知,cos2θ-sin2θ=1,即cos2θ-(1-cos2θ)=1,cos2θ=1,所以cosθ=±1。 而当cosθ=±1时,sinθ=0。  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里