2024年成考高起点《数学(理)》每日一练试题10月31日

2024-10-31 12:00:53 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题10月31日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、在△ABC中,已知a=,b=,c=,则()。

  • A:∠A<∠B<∠C
  • B:∠A>∠B>∠C
  • C:∠A<∠C<∠B
  • D:∠A>∠C>∠B

答 案:C

解 析:由已知a=,b=,c=可知a

2、函数的定义域是()

  • A:{x|-3<x<-1}
  • B:{x|x<-3或x>-1}
  • C:{x|1<x<3}
  • D:{x|x<1或x>3}

答 案:D

解 析:由对数函数的性质可知,解得x>3或x<1,因此函数的定义域为{x|x<1或x>3}

3、与1775°的终边相同的绝对值最小的角是()。

  • A:335°
  • B:-25°
  • C:25°
  • D:155°

答 案:B

解 析:1775°=5×360°+(-25°),故所求角为-25°。  

4、设甲:;乙:.则()

  • A:甲是乙的必要条件但不是充分条件
  • B:甲是乙的充分条件但不是必要条件
  • C:甲是乙的充要条件
  • D:甲既不是乙的充分条件也不是乙的必要条件

答 案:A

解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.

主观题

1、已知tan2θ=2tan2ψ+1,求cos2θ+sin2ψ的值。

答 案:由已知,得

2、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

3、计算 (1)tan5°+ cot5°- 2sec80°
(2)tan15°+cot15
(3)sin15°sin75°

答 案:(1)化切割为弦进行运算。 (2) (3)

4、试证明下列各题
(1)
(2)

答 案:(1)化正切为正、余弦,通分即可得证。 (2)

填空题

1、化简sin(x+y)-2cosxsiny=______.  

答 案:sin(x-y)

解 析:原式=sinxcosy+cosxsiny-2cosxsiny=sinxcosy-cosxsiny=sin(x-y)

2、一个问题在1小时内,甲能独立解决的概率是0.5,乙能独立解决的概率是0.4,两人在1小时内解决问题的概率是______。  

答 案:0.7

解 析:设事件A为两人在1小时内解决问题,即1小时内至少有一人能解决问题,事件B为甲在1小时内解决问题,事件C为乙在1小时内解决问题,事件B、C是相互独立事件,事件A的对立事件 互为在1小时内两个人都没有解决问题,所以 P(A)=1-P()=1-P(·)=1-P()·P() =1-(1-0.5)×(1-0.4)=1-(0.5×0.6)=1-0.3=0.7

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里