2024年成考高起点《数学(理)》每日一练试题10月28日

2024-10-28 12:02:59 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题10月28日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设集合M={x||x-2|<1},N={x|x>2},则M∩N=()

  • A:{x|1<x<3}
  • B:{x|x>2}
  • C:{x|2<x<3}
  • D:{x|1<x<2}

答 案:C

解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}

2、抛物线 y=ax2的准线方程是 y=2,则a=()。

  • A:
  • B:
  • C:8
  • D:-8

答 案:B

解 析:

3、顶点在坐标原点,准线方程为y=4的抛物线方程式()。

  • A:
  • B:
  • C:
  • D:

答 案:C

4、已知点在曲线上,那么a的值是()。

  • A:1
  • B:1或-4
  • C:-4或-1
  • D:-4

答 案:B

主观题

1、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

2、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  

答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函数当a<0时有最大值 是开口向下的抛物线,有最大值 法二:用导数来求解 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294  

3、求(1+tan10°)(1+tan35°)的值。  

答 案:原式=1+tan10°+tan35°+tan10°·tan35°

4、设函数(1)求;(2)求函数f(θ)最小值。

答 案:

填空题

1、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()

答 案:7

解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为

2、lg(tan43°tan45°tan47°)=()  

答 案:0

解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里