2024年成考高起点《数学(理)》每日一练试题10月06日

2024-10-06 11:57:42 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题10月06日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、一部电影在4个单位轮映,每一单位放映一场,轮映次序有()。

  • A:4种
  • B:16种
  • C:24种
  • D:256种

答 案:C

2、以抛物线y2=8x的焦点为圆心,且与此抛物线的准线相切的圆的方程是()。

  • A:(x+2)2+y2=16
  • B:(x+2)2+y2=4
  • C:(x-2)2+y2=16
  • D:(x-2)2+y2=4

答 案:C

解 析:抛物线y2=8x的焦点,即圆心为(2,0),抛物线的准线方程是x=-2,与此抛物线的准线相切的圆的半径是r=4,与此抛物线的准线相切的圆的方程是(x-2)2+y2=16。答案为C。

3、过直线3x+2y+1=0与2x-3y+5=0的交点,且垂直于直线L:6x-2y+5=0的直线方程是()。

  • A:x-3y-2=0
  • B:x+3y-2=0
  • C:x-3y+2=0
  • D:x+3y+2=0

答 案:B

解 析: 即两直线的交点坐标为(-1,1) 又直线L:6x-2y+5=0的斜率为3 ,则所求的直线方程为即x+3y-2=0.

4、过AB(-5,0)两点直线的倾斜角为()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:

主观题

1、在△ABC中如果sinA=2sinBcosC,求证:△ABC是等腰三角形。  

答 案:∴△ABC为等腰三角形。

2、记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b2=ac,求A。    

答 案:由余弦定理b2=a2+c2-2accosB,可得ac=a2+c2-ac,即a2+c2-2ac=(a-c)2=0,解得a=c。 又因为B=60°,故△ABC为等边三角形,所以A=60°

3、已知等差数列{an}中,a1+a2+a3=6,a2+a4+a5= 12求{an}的首项与公差。  

答 案:因为{an}为等差数列,

4、已知am=,an=,求a3n-4m的值。  

答 案:

填空题

1、若P(3,2)是连接P1(2,y)和P2(x,6)线段的中点,则x=______,y=______。  

答 案:x=4,y=-2  

解 析:

2、已知关于t的二次方程t2-6tsinθ+tanθ=0(0<θ<)的两根相等,则sinθ+cosθ的值等于______。

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里