2024年成考高起点《数学(文史)》每日一练试题10月03日

2024-10-03 12:14:56 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题10月03日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、书架上层有6本不同的数学书,下层有4本不同的语文书,从中任取一本书,则不同的选法有()。

  • A:10
  • B:6
  • C:4
  • D:24

答 案:A

解 析:数学书和语文书一共有6+4=10(本)且每本书都不相同,所以从中任取一本的方法有10种。答:有10种不同的取法。

2、掷两颗骰子点数之和等于4的概率是()。

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:掷一对骰子的等可能结果共有n=36种,点数之和等于4的结果有1+3=4,3+1=4,2+2=4,故有m=3种,所以其概率为故选B。  

3、函数y=cos4x-sin4x(x∈R)的最小正周期为()。

  • A:
  • B:π
  • C:2π
  • D:4π

答 案:B

解 析:y=(cos2x+sin2x)(cos2x-sin2x)=cos2x, 所以

4、函数的定义域为()。

  • A:R
  • B:{1}
  • C:{x||x|≤1}
  • D:{x||xl≥1}

答 案:A

解 析:本题主要考查的知识点为函数的定义域。 对于 奇次根号下无要求,故函数的定义域为R。

主观题

1、求(1+tan10°)(1+tan35°)的值。

答 案:原式=1+tan10°+tan35°+tan10°·tan35°

2、设椭圆的中心是坐标原点,长袖在x轴上,离心率,已知点P(0,3/2)到椭圆上的点的最远距离是,求椭圆的方程。

答 案:

3、已知lg2=a,lg3=b,求lg0.15关于a,b的表达式。  

答 案:

4、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

填空题

1、在△ABC中,已知AB=3,BC=5,AC=7,则cosB=______。

答 案:

2、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。

答 案:

解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有所以故切点横坐标为  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里