2024年成考高起点《数学(文史)》每日一练试题09月29日

2024-09-29 12:19:03 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题09月29日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、在∆ABC中,∠ABC=600,AB=4,BC=6,则AC=()。

  • A:128
  • B:76
  • C:
  • D:

答 案:C

2、设M=那么()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析: M是集合,a为元素,{a}为集合,元素与集合的关系是集合与集合的关系是  

3、A、B是抛物线y2=8x上两点,且此抛物线的焦点在线段AB上,已知A、B两点的横坐标之和为10,则|AB|=()。

  • A:18
  • B:14
  • C:12
  • D:10

答 案:B

解 析:因为焦点F在AB上,则有FA=A到准线的距离=X1+P/2FB=B到准线的距离=X2+P/2所以,AB=FA+FB=X1+X2+P
又有X1+X2=10.P=4
故有:AB=10+4=14

4、函数y=-x2+2x的值域是()。  

  • A:[0,+∞)
  • B:[1,+∞)
  • C:(-∞,1]
  • D:(-∞,0)

答 案:C

解 析:本题主要考查的知识点为函数的值域. y=-x2+2x=1-(x-1)2≤1,故原函数的值域为(-∞,1]

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

2、在△ABC中,已知AB=2,BC=1,CA= 点D,E,F分别在AB,BC,CA边上,△DEF为正三角形,记∠FEC为α,如果sinα= 求△DEF的边长。

答 案:解析:由AB=2,BC=1,CA= 得BC2=CA2=AB2,因此∠C=90°,如图所示。 因为sinA= 所以∠A=30°,于是∠b=60°。 设正△DEF边长为l,已知AB=2,sinα= 由此EC=lcosα 有图知,∠1+∠2+∠3=180°(三角形内角和); ∠3+∠4+α=180°,因为∠2-∠4=60°,所以∠1=α。 【考点指要】本题主要考查三角函数的概念、同角三角函数的关系及正弦定理,这些均是考试大纲要求掌握的重要概念,并要求能达到灵活应用的程度,此类题是在成人高考中出现频率较高的题型,

3、已知三角形的三边边长组成公差为1的等差数列,且最大角是最小角的二倍,求三边之长。  

答 案:三角形的三边边长分别为4,5,6。

4、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

填空题

1、函数f(x)=在区间[-3,3]上的最大值为()  

答 案:4

解 析:这题考的是高次函数的最值问题,可用导数来求函数在区间[-3,3]上的最值。 列出表格 由上表可知函数在[-3,3]上,在x=1点处有最大值为4.  

2、在∆ABC中,已知cosA=,cosB=,那么cosC=______。

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里