2024年成考高起点《数学(理)》每日一练试题09月25日

2024-09-25 12:05:00 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题09月25日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、若f(x)为偶函数,且在(0,+∞)为增函数,则下列不等式成立的是()。

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:

2、两个数的等差中项为20,等比中项为12,那么这两个数为()。

  • A:18,22
  • B:9,16
  • C:4,36
  • D:16,24

答 案:C

3、二次函数y=2x2+mx-5在区间(-∞,-1)内是减函数,在区间(-1,+∞)内是增函数,则m的值是()。

  • A:4
  • B:-4
  • C:2
  • D:-2

答 案:A

解 析:由题意可知二次函数y=2x2+mx-5的对称轴方程为x=-1,又解得m=4

4、一个袋子中装有标号分别为1,2,3,4的四个球,采用有放回的方式从袋中摸球两次,每次摸出一个球,则恰有一次摸出2号球的概率为()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:本题主要考查的知识点为独立重复试验的概率。 所求概率为

主观题

1、已知设△ABC的三边长为a、b、C,2sin2A=3(sin2B+sin2C)且cos2A+3cosA+3cos(B-C)=1,求证:a:b:c=:1:1。

答 案:因所证的是△ABC三边的比,所以可将题中角的关系式转化为边的关系式,需用正弦定理关于题中的余弦关系式可通过恒等变形化为正弦函数的关系式。 ∵2sin2A=3(sin2B+sin2C)…① 由正弦定理得,2a2=3(b2+c2)…②
∵cos2A+3cosA+3cos(B-C)=1
∴3[cosA+cos(B-C)]=1-cos2A.
∵A=180°-(B+C)
∴3[-cos(B+C)+cos(B-C)]=2sin2A. 由两角和与差的余弦公式得
6sinBsinB=2sin2A…③
由①③得,2sinBsinC=sin2B+sin2C.
sin2B-2sinBsinC+sin2C=0
(sinB-sinC)2=0
sinB= sinC.
由正弦定理得

∴a:b=:1
于是a:b:c=:1:1。  

2、已知等差数列{an}中,a1+a2+a3=6,a2+a4+a5= 12求{an}的首项与公差。  

答 案:因为{an}为等差数列,

3、已知x+x-1=,求x2+x-2的值。

答 案:由已知,得

4、

答 案:

填空题

1、函数y=x4-2x2+5,x∈[-2,2]上的最小值______,最大值______。

答 案:4;13

解 析:y=x4-2x2+5,y'=4x3-4x

2、=______。  

答 案:27

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里