2024年成考高起点《数学(理)》每日一练试题09月14日

2024-09-14 12:14:21 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题09月14日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、已知α为三角形的一个内角,且sinα+cosα=则α∈()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由已知得

2、如果球的大圆面积增为原来的4倍,则该球的体积就增为原来的()。

  • A:4倍
  • B:8倍
  • C:12倍
  • D:16倍

答 案:B

解 析:

3、函数的定义域为()。

  • A:R
  • B:{1}
  • C:{x||x|≤1)
  • D:{x||x|≥1}

答 案:A

解 析:本题主要考查的知识点为函数的定义域. 对于,奇次根号下无要求,故函数的定义域为R

4、参数方程为参数)表示的图形为()

  • A:直线
  • B:圆
  • C:椭圆
  • D:双曲线

答 案:B

解 析:即半径为1的圆,圆心在原点

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

2、函数在其定义域上是否连续?作出f(x)的图形。

答 案:f(x)的定义域为[0,2] 当0≤x<1时f(x)=1-x是连续的 当1 f(x)除了在x=1处不连续,在其定义域内处处连续,如图7-7.

3、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值

答 案:(Ⅰ)函数的定义域为 (Ⅱ)  

4、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

填空题

1、已知,则=______。  

答 案:

解 析:

2、cos267.5°- 0.5=______。

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里