2024年成考高起点《数学(文史)》每日一练试题08月15日

2024-08-15 12:16:00 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信 Scan me!

2024年成考高起点《数学(文史)》每日一练试题08月15日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、由数字1、2、3、4组成没有重复数字的两位数共有()。

  • A:6个
  • B:12个
  • C:8个
  • D:10个

答 案:B

2、在∆ABC中,∠ABC=600,AB=4,BC=6,则AC=()。

  • A:128
  • B:76
  • C:
  • D:

答 案:C

3、已知tanα+sinα=m,tanα-sinα=n(m+n≠0),则cosα的值是()。  

  • A:
  • B:
  • C:
  • D:

答 案:A

4、

  • A:(-∞,-6)∪(1,+∞)
  • B:(-6,1)
  • C:(-∞,2)∪(3,+∞)
  • D:(2,3)

答 案:B

解 析: 求必须有6-5x-x2>0,即x2+5x-6<0,即(x+6)(x-1)<0,解得-6,用区间表示为(-6,1).此处应注意分母不能为零. 【考点指要】本题要求按二次根式定义域来解一元二次不等式,求定义域是成人高考的常见题.

主观题

1、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。

答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’ =x2-a+2x(x-4) =3x2-8x-a. (Ⅱ)由于f’(-1)=3+8-a=8,得a=3. 令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6

2、  

答 案:

3、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

4、求函数(x∈R)的最大值与最小值。  

答 案:设sinx+cosx=t,则(sinx+cosx)2=t2,1+2sinxcosx=t2,sinxcosx= 于是转化为求的最值。 由所设知 上为增函数,故g(t)的最大值为最小值为

填空题

1、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。

答 案:

解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有所以故切点横坐标为  

2、log2[log2(log381)]=______。  

答 案:1

解 析:由于log381=log334=4,于是 原式=log2(log24)=log22=1。  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里
用户服务协议与隐私政策

感谢您信任并使用聚题库系统。我们深知个人信息和隐私保护的重要性,为了更好地保护您的个人权益,在使用产品前请充分阅读并理解《用户服务协议》《隐私协议》


长沙聚优教育咨询有限公司(以下简称“长沙聚优”)在此特别提醒您在使用相关服务前,请认真阅读协议条款内容,确保您充分理解协议中各条款,特别是免除或者限制责任、法律适用和管辖的条款,以及开通或使用某项服务的单独协议,并选择接受或不接受。如你未满18周岁,请在法定监护人陪同下仔细阅读并充分理解本协议,并征得法定监护人的同意后使用“聚题库”软件及相关服务。除非您接受本协议所有条款,否则您无权注册、登录或使用本协议所涉服务。


隐私权政策适用我们提供的软件、网站、服务,包括但不限于适用于电脑、移动智能终端产品及服务。


本隐私权政策旨在帮助您了解我们会收集哪些数据,为什么收集这些数据、会利用这些数据做什么以及我们如何保护这些数据。了解这些内容,对于您行使个人权利及保护您的个人信息至关重要,请您在使用我们产品或服务前务必抽出时间认真阅读本政策。

不同意
同意

需要获得您的同意后才能使用服务