2024年成考高起点《数学(理)》每日一练试题08月12日

2024-08-12 12:09:20 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题08月12日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、函数y=sin(x+11)的最大值是()。

  • A:11
  • B:1
  • C:-1
  • D:-11

答 案:B

解 析:本题主要考查的知识点为三角函数的值域。 因为-1≤sin(wx+q)≤1,所以-1≤sin(x+11)≤1,故y=sin(x+11)的最大值为1。

2、在的展开式中,的系数是

  • A:448
  • B:1140
  • C:-1140
  • D:-448

答 案:D

解 析:直接套用二项式展开公式: 注:展开式中第r+1项的二项式系数与第r+1项的系数不同,此题不能只写出就为的系数  

3、在△ABC中,已知2B= A+C,= ac,则B-A=()  

  • A:0
  • B:
  • C:
  • D:

答 案:A

解 析:在△ABC中,A+B+C=π,A+C=π-B,① 因为2B=A+C,② 由①②得2B=π-B, 由③④得a=c。所以A=C,又所以△ABC为等边三角形,则B-A=0  

4、方程的图像是下图中的()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:本题属于读图题型,在寻求答案时,要着重讨论方程的表达式  

主观题

1、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值

答 案:(Ⅰ)函数的定义域为 (Ⅱ)  

2、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

4、记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b2=ac,求A。    

答 案:由余弦定理b2=a2+c2-2accosB,可得ac=a2+c2-ac,即a2+c2-2ac=(a-c)2=0,解得a=c。 又因为B=60°,故△ABC为等边三角形,所以A=60°

填空题

1、曲线y=在点(1,1)处的切线方程是______。

答 案:2x+y-3=0

解 析:本题主要考查的知识点为切线方程 由题意,该切线斜率, 又过点(1,1),所以切线方程为y-1=-2(x-1)

2、函数的定义域是()

答 案:

解 析:所以函数的定义域是

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里