2024年成考高起点《数学(理)》每日一练试题07月15日

2024-07-15 12:00:26 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题07月15日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、将一颗骰子抛掷1次,到的点数为偶数的概率为  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:一颗骰子的点数分别为1,2,3,4,5,6,其中偶数与奇数各占一半,故抛掷1次,得到的点数为偶数的概率为

2、过点(-2,2)与直线x+3y-5=0平行的直线是()

  • A:x+3y-4=0
  • B:3x+y+4=0
  • C:x+3y+8=0
  • D:3x-y+8=0

答 案:A

解 析:所求直线与x+3y-5=0平行,可设所求直线为x+3y+c=0,将点(一2,2)带入直线方程,故-2+3×2+c=0,解得c=-4,因此所求直线为线为x+3y-4=0.

3、已知点M(1,2),N(2,3),则直线MN的斜率为()。

  • A:
  • B:1
  • C:
  • D:-1

答 案:B

解 析:本题主要考查的知识点为直线的斜率. 直线MN的斜率为:

4、设0

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:  

主观题

1、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

2、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

4、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

填空题

1、函数的图像与坐标轴的交点共有()  

答 案:2

解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有故函数与x轴交于(1,0) 点,因此函数 与坐标轴的交点共有 2个.

2、函数y=-x2+ax图像的对称轴为x=2,则a=______。  

答 案:4

解 析:本题主要考查的知识点为二次函数的性质 由题意,该函数图像的对称轴为

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里