2024年成考高起点《数学(理)》每日一练试题06月16日

2024-06-16 12:11:49 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题06月16日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设甲:;乙:.则()

  • A:甲是乙的必要条件但不是充分条件
  • B:甲是乙的充分条件但不是必要条件
  • C:甲是乙的充要条件
  • D:甲既不是乙的充分条件也不是乙的必要条件

答 案:A

解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.

2、已知α∩β=a,b⊥β,b在α内的射影是b’,那么b'和α的关系是()

  • A:b'//α
  • B:b'⊥α
  • C:b'与α是异面直线
  • D:b'与α相交成锐角

答 案:B

解 析: ∴由三垂线定理的逆定理知,b在α内的射影b'⊥α,故选B  

3、过点P(2,3)且在两轴上截距相等的直线方程为()  

  • A:
  • B:
  • C:x+y=5
  • D:

答 案:B

解 析:选项A中,在x、y 轴上截距为 5.但答案不完整 所以选项B中有两个方程,在x轴上横截距与y轴上的纵截距都为0,也是相等的 选项C,虽然过点(2,3),实质上与选项A相同.选项 D,转化为:答案不完整  

4、若x<y<0,则()。  

  • A:
  • B:
  • C:
  • D:

答 案:D.

解 析:本题主要考查的知识点为不等式的性质. 因为x<y<0,故

主观题

1、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

3、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

4、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

填空题

1、lg(tan43°tan45°tan47°)=()  

答 案:0

解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0

2、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()

答 案:7

解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里