2024年成考高起点《数学(文史)》每日一练试题06月06日

2024-06-06 12:09:32 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题06月06日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、点(2,4)关于直线y=x的对称点的坐标为()  

  • A:(4,2)
  • B:(-2,-4)
  • C:(-2,4)
  • D:(-4,-2)

答 案:A

解 析:点(2,4) 关于直线y=x对称的点为(4,2)

2、函数y=2sinxcosx的最小正周期是()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:y=2sinxcosx=sin2x,故其最小正周期

3、函数的图像与直线y=4的交点坐标为()

  • A:(0,4)
  • B:(4,64)
  • C:(1,4)
  • D:(4,16)

答 案:C

解 析:令y=4x=4,解得x=1,故所求交点为(1,4).

4、设函数f(x十1)=2x+2,则f(x)=()

  • A:2x-1
  • B:2x
  • C:2x+1
  • D:2x+2

答 案:B

解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t换成x,因此f(x)=2x.

主观题

1、已知三角形的一个内角是,面积是周长是20,求各边的长.  

答 案:设三角形三边分别为a,b,c,∠A=60°,  

2、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。

答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’ =x2-a+2x(x-4) =3x2-8x-a. (Ⅱ)由于f’(-1)=3+8-a=8,得a=3. 令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6

3、已知等差数列{an}中,a1+a3+a5=6,a2+a4+a6=12,求{an}的首项与公差.  

答 案:因为{an}为等差数列,则

4、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

填空题

1、函数的图像与坐轴的交点共有()个  

答 案:2

解 析:当x=0,故函数与y轴交于(0,-1)点;令y=0,则有故函数与工轴交于(1,0)点,因此函数与坐标轴的交点共有2个

2、函数y=的定义域是()

答 案:[1,+∞)

解 析:要是函数y=有意义,需使 所以函数的定义域为{x|x≥1}=[1,+∞)  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里