2024-06-02 12:04:40 来源:吉格考试网
2024年成考高起点《数学(理)》每日一练试题06月02日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、设f(x)=x3+ax2+x为奇函数,则a=()。
答 案:B
解 析:本题主要考查的知识点为函数的奇偶性. 因为f(x)为奇函数,故f(-x)=-f(x)。即-x3+ax2-x=-x3-ax2-x,a=0。
2、下列函数中,为奇函数的是()
答 案:B
解 析:当f(-x)=-f(x),函数f(x)是奇函数,只有选项B符合.
3、函数的反函数是()
答 案:A
解 析:,由于x≤0,故把x与y互换,得所求反函数为
4、一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为()。
答 案:A
解 析:本题主要考查的知识点为随机事件的概率 一次取出2件均为正品的概率为
主观题
1、已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
答 案:
2、记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b2=ac,求A。
答 案:由余弦定理b2=a2+c2-2accosB,可得ac=a2+c2-ac,即a2+c2-2ac=(a-c)2=0,解得a=c。 又因为B=60°,故△ABC为等边三角形,所以A=60°
3、已知等差数列{an}中,a1+a2+a3=6,a2+a4+a5= 12求{an}的首项与公差。
答 案:因为{an}为等差数列,
4、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此
填空题
1、函数的定义域是()
答 案:
解 析:所以函数的定义域是
2、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。
答 案:
解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有 即所以故切点横坐标为