2024年成考高起点《数学(文史)》每日一练试题05月15日

2024-05-15 12:21:25 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题05月15日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为()。

  • A:0.6
  • B:0.5
  • C:0.4
  • D:0.3

答 案:A

解 析:本题主要考查的知识点为随机事件的概率。 一次取出2件均为正品的概率为

2、设集合M={x||x-2||<2},N={0,1,2,3,4},则M∩N=()

  • A:{2}
  • B:{0,1,2}
  • C:{1,2,3}
  • D:{0,1,2,3,4}

答 案:C

解 析:解得M={x||x-2||<2}={x|-2<x-2<2}={x|0<x<4},故M∩N={1,2,3}.

3、设函数f(x十1)=2x+2,则f(x)=()

  • A:2x-1
  • B:2x
  • C:2x+1
  • D:2x+2

答 案:B

解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t换成x,因此f(x)=2x.

4、已知直线l:3x一2y-5=0,圆C:,则C上到l的距离为1的点共有()

  • A:1个
  • B:2个
  • C:3个
  • D:4个

答 案:D

解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.

主观题

1、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

2、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。

答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’ =x2-a+2x(x-4) =3x2-8x-a. (Ⅱ)由于f’(-1)=3+8-a=8,得a=3. 令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6

3、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.  

答 案:

4、已知等差数列{an}中,a1+a3+a5=6,a2+a4+a6=12,求{an}的首项与公差.  

答 案:因为{an}为等差数列,则

填空题

1、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()  

答 案:6

解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.  

2、函数f(x)=在区间[-3,3]上的最大值为()  

答 案:4

解 析:这题考的是高次函数的最值问题,可用导数来求函数在区间[-3,3]上的最值。 列出表格 由上表可知函数在[-3,3]上,在x=1点处有最大值为4.  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里