2024-05-14 12:04:42 来源:吉格考试网
2024年成考高起点《数学(理)》每日一练试题05月14日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,则△ABC是()
答 案:B
解 析:判断三角形的形状,条件是用一个对数等式给出先将对数式利用对数的运算法则整理。 ∵lgsinA-lgsinB-lgcos=lg2,由对数运算法则可得,左 两个对数底数相等则真数相等:即2sinBcosC=sinA 在△ABC中,∵A+B+C=180°,∴A=180°-(B+C), 故为等腰三角形
2、下列函数中,为增函数的是()。
答 案:A
解 析:本题主要考查的知识点为函数的单调性. 对于y=x3,y’=3x2≥0,故y=x3为增函数
3、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()
答 案:B
解 析:求cos可直接用公式cos a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,
4、已知α∩β=a,b⊥β,b在α内的射影是b’,那么b'和α的关系是()
答 案:B
解 析: ∴由三垂线定理的逆定理知,b在α内的射影b'⊥α,故选B
主观题
1、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。 (I)求C的方程; (Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB
答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为 (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得因此A点坐标为 设B点坐标为则 因为则有 即解得x0=4 所以B点的坐标为
2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量和关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
3、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函数当a<0时有最大值 是开口向下的抛物线,有最大值 法二:用导数来求解 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
4、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
答 案:
填空题
1、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。
答 案:
解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有 即所以故切点横坐标为
2、lg(tan43°tan45°tan47°)=()
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0