2024年成考高起点《数学(文史)》每日一练试题04月07日

2024-04-07 12:15:52 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题04月07日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、在△ABC中,三边为a、b、c,∠B=60°,则的值是()  

  • A:大于零
  • B:小于零
  • C:等于零
  • D:不能确定

答 案:C

解 析:由已知用余弦定理得:  

2、已知向量i,j为互相垂直的单位向量,向量a=2i+mj,若|a|=2,则m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由题可知a=(2,m),因此,故m=0.

3、甲袋内有2个白球3个黑球,乙袋内有3个白球1个黑球,现从两个袋内各摸出1个球,摸出的两个球都是白球的概率是

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由已知条件可知此题属于相互独立同时发生的事件,从甲袋内摸到白球的概率为P(A)=乙袋内摸到白球的概率为,所以现从两袋中各提出一个球,摸出的两个都是白球的概率为

4、命题甲:x>y且xy>0,命题乙:则()  

  • A:甲是乙的充分条件,但不是必要条件
  • B:甲是乙的必要条件,但不是充分条件
  • C:甲是乙的充分必要条件
  • D:甲不是乙的必要条件也不是乙的充分条件

答 案:A

解 析:

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

2、已知三角形的一个内角是,面积是周长是20,求各边的长.  

答 案:设三角形三边分别为a,b,c,∠A=60°,  

3、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

4、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积

答 案:

填空题

1、任选一个不大于20的正整数,它恰好是3的整数倍的概率是()  

答 案:

解 析:设n为不大于20的正整数的个数,则n=20,m为在这20个数中3的倍数:3,6、9、12、15、18的个数。 ∴m=6,∴所求概率=  

2、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()  

答 案:6

解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里