2024年成考高起点《数学(文史)》每日一练试题04月06日

2024-04-06 12:06:35 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题04月06日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、的导数是  

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:

2、下列函数中,为减函数的是()

  • A:y=cosx
  • B:
  • C:
  • D:

答 案:C

解 析:由对数函数的性质可知,当底数大于0小于1时,在定义域内,对数函数为减函数,故选C选项.

3、设α是三角形的一个内角,若,则sinα=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由题知0<α<兀,而,故,因此.

4、下列函数为奇函数的是 ( )。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:本题主要考查的知识点为函数的奇偶性.  【应试指导】f(z)=sinx=-sin(-x)=-f(-x),所以y=sinx为奇函数.        

主观题

1、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

3、已知三角形的一个内角是,面积是周长是20,求各边的长.  

答 案:设三角形三边分别为a,b,c,∠A=60°,  

4、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.  

答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 当x=5时,y有最大值,所以每亩地最多种25棵

填空题

1、()

答 案:3

解 析:

2、点(4,5)关于直线y=x的对称点的坐标为()

答 案:(5,4)

解 析:点(4,5)关于直线y=x的对称点为(5,4).

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里