2024年成考高起点《数学(理)》每日一练试题03月25日

2024-03-25 12:19:13 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题03月25日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、直线3x-4y-9=0与圆(θ为参数)的位置关系是

  • A:相交但直线不过圆心
  • B:相交但直线通过圆心
  • C:相切
  • D:相离

答 案:A

解 析:方法一: 圆心O(0,0),r=2,则圆心O到直线的距离为 0

2、(2-3i)2=()

  • A:13-6i
  • B:13-12i
  • C:-5-6i
  • D:-5-12i

答 案:D

解 析:

3、设集合M={x||x-2|<1},N={x|x>2},则M∩N=()

  • A:{x|1<x<3}
  • B:{x|x>2}
  • C:{x|2<x<3}
  • D:{x|1<x<2}

答 案:C

解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}

4、方程的图像是下图中的()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:本题属于读图题型,在寻求答案时,要着重讨论方程的表达式  

主观题

1、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

2、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

3、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

4、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

填空题

1、lg(tan43°tan45°tan47°)=()  

答 案:0

解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0

2、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()  

答 案:

解 析:原直线方程可化为交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里