2024年成考高起点《数学(文史)》每日一练试题03月22日

2024-03-22 12:16:13 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题03月22日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则这2个球都为红球的概率为()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:两个球都是红球的概率为

2、如果点(2,一4)在一个反比例函数的图像上,那么下列四个点中也在该图像上的是()

  • A:(一2,4)
  • B:(一4,一2)
  • C:(一2,一4)
  • D:(2,4)

答 案:A

解 析:设反比例函数为,点(2,-4)在反比例函数的图像上,因此有,解得k=-8,故反比例函数,当x=-2时,y=4,故选A在该图像上.

3、设甲:;乙:.则()

  • A:甲是乙的必要条件但不是充分条件
  • B:甲是乙的充分条件但不是必要条件
  • C:甲是乙的充要条件
  • D:甲既不是乙的充分条件也不是乙的必要条件

答 案:A

解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.

4、已知双曲线上一点到两焦点(-5,0),(5,0)距离之差的绝对值等于6,则双曲线方程为()  

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:由已知条件知双曲线焦点在x轴上属于第一类标准式,又知c=5,2a=6, ∴a=3,∴所求双曲线的方程为  

主观题

1、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

2、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.  

答 案:

3、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

4、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

填空题

1、点(4,5)关于直线y=x的对称点的坐标为()

答 案:(5,4)

解 析:点(4,5)关于直线y=x的对称点为(5,4).

2、()

答 案:3

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里