2024-03-09 12:15:34 来源:吉格考试网
2024年成考高起点《数学(理)》每日一练试题03月09日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、函数的反函数是()
答 案:A
解 析:,由于x≤0,故把x与y互换,得所求反函数为
2、已知集合M =(2,3,5,a),N =(1,3,4,b),若M∩N=(1,2,3),则a,b的值为
答 案:C
解 析:M∩N={2,3,5,a} ∩{1,3,4,6} ={1,2,3} 又因为M中无“1”元素,而有“a”元素,只有a=1 而N中无“2”元素,而有“b元素”,只有b=2
3、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()
答 案:B
解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b2=16,故双曲线方程为
4、将一颗骰子抛掷1次,到的点数为偶数的概率为
答 案:D
解 析:一颗骰子的点数分别为1,2,3,4,5,6,其中偶数与奇数各占一半,故抛掷1次,得到的点数为偶数的概率为
主观题
1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此
2、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.
答 案:由△ABC的面积为得所以AB =4.因此所以
3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当时,f'(x)
4、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值
答 案:(Ⅰ)函数的定义域为 (Ⅱ)
填空题
1、函数的定义域是()
答 案:
解 析:所以函数的定义域是
2、的展开式是()
答 案:
解 析: