2024年成考高起点《数学(文史)》每日一练试题02月13日

2024-02-13 12:19:26 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题02月13日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、已知成等差数列,且为方程的两个根,则的值为()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由根与系数的关系得由等差数列的性质得

2、函数f(x)=在区间[1,4]上的最大值和最小值分别是()

  • A:2和-2
  • B:2,没有最小值
  • C:1和1
  • D:2和4

答 案:A

解 析:f(x)=  

3、函数与y的图像之间的关系是  

  • A:关于原点对称
  • B:关于x轴对称
  • C:关于直线 y=1对称
  • D:关于y轴对称

答 案:D

解 析:关于y轴对称,

4、设成等比数列,则x等于  

  • A:0或-2
  • B:1或-1
  • C:0或-2
  • D:-2

答 案:C

解 析:由已知条件的得

主观题

1、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

2、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.  

答 案:

3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

4、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

填空题

1、任选一个不大于20的正整数,它恰好是3的整数倍的概率是()  

答 案:

解 析:设n为不大于20的正整数的个数,则n=20,m为在这20个数中3的倍数:3,6、9、12、15、18的个数。 ∴m=6,∴所求概率=  

2、点(4,5)关于直线y=x的对称点的坐标为()

答 案:(5,4)

解 析:点(4,5)关于直线y=x的对称点为(5,4).

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里