2024年成考高起点《数学(理)》每日一练试题01月31日

2024-01-31 12:08:10 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题01月31日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、( )

  • A:-2
  • B:
  • C:
  • D:2

答 案:C

2、设双曲线的渐近线的斜率为k,则|k|=()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:双曲线渐近线的斜率为k故本题中k

3、下列函数中,为减函数的是()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由对数函数的性质可知,当底数大于0小于1时,在定义域内,对数函数为减函数.

4、某类灯泡使用时数在1000小时以上的概率为0.2,三个灯泡在使用1000小时以后最多只有一个坏的概率为()

  • A:0.008
  • B:0.104
  • C:0.096
  • D:1

答 案:B

解 析:已知灯泡使用1000小时后好的概率为0.2,坏的概率为1-0.2=0.8,则三个灯泡使用1000小时以后,可分别求得: P(没有坏的) P(一个坏的)故最多只有一个坏的概率为:0.008+0.096=0.104.  

主观题

1、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

4、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c两两垂直  

填空题

1、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()

答 案:7

解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为

2、的展开式是()

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里