2024年成考高起点《数学(文史)》每日一练试题01月28日

2024-01-28 12:08:20 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题01月28日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设α是三角形的一个内角,若,则sinα=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由题知0<α<兀,而,故,因此.

2、函数f(x)=的单调增区间是()

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:中的的减区间就为f(x)的增区间,设u(x)=当x∈R时,u(x)>0,函数u(x)在是减函数, 上是增函数 故f(x)=的单调增区间为 ps:关于复合函数的问题要逐步分清每一层次的函数的图像和性质,再结合起来考虑整体,有时也可画出部分函数的图像来帮助分析和理解.  

3、函数的图像与直线y=4的交点坐标为()

  • A:(0,4)
  • B:(4,64)
  • C:(1,4)
  • D:(4,16)

答 案:C

解 析:令y=4x=4,解得x=1,故所求交点为(1,4).

4、设函数f(x十1)=2x+2,则f(x)=()

  • A:2x-1
  • B:2x
  • C:2x+1
  • D:2x+2

答 案:B

解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t换成x,因此f(x)=2x.

主观题

1、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.

答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积

2、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

3、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.  

答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 当x=5时,y有最大值,所以每亩地最多种25棵

4、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

填空题

1、函数的图像与坐轴的交点共有()个  

答 案:2

解 析:当x=0,故函数与y轴交于(0,-1)点;令y=0,则有故函数与工轴交于(1,0)点,因此函数与坐标轴的交点共有2个

2、函数y=的定义域是()

答 案:[1,+∞)

解 析:要是函数y=有意义,需使 所以函数的定义域为{x|x≥1}=[1,+∞)  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里