2024年成考高起点《数学(理)》每日一练试题01月23日

2024-01-23 12:08:18 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题01月23日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法  

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:将院校看成元素,高中生看成位置,由重复排列的元素、位置的条件口诀: “元素可挑剩,位置不可缺”,重复排列的种数共有种,即将元素的个数作为底数,位置的个数作为指数.即:元素(院校)的个数为 3,位置(高中生)的个数为5,共有种。  

2、已知全集U=R,A={x|x≥1},B={x|-1

  • A:{x|x≤2}
  • B:{x|x<2}
  • C:{x|-1
  • D:{x|-1

答 案:A

解 析:补集运算应明确知道是否包括端点.A在U中的补集是x<1,  

3、设甲:;乙:.则()

  • A:甲是乙的必要条件但不是充分条件
  • B:甲是乙的充分条件但不是必要条件
  • C:甲是乙的充要条件
  • D:甲既不是乙的充分条件也不是乙的必要条件

答 案:A

解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.

4、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b2=16,故双曲线方程为

主观题

1、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  

答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函数当a<0时有最大值 是开口向下的抛物线,有最大值 法二:用导数来求解 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294  

2、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

4、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域  

答 案:

填空题

1、函数的定义域是()

答 案:

解 析:所以函数的定义域是

2、不等式的解集为()  

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里