2024年成考高起点《数学(文史)》每日一练试题01月13日

2024-01-13 12:03:48 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(文史)》每日一练试题01月13日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、若函数f(x)=1+在(0,+∞)上是减函数,则()

  • A:a>1
  • B:a>2
  • C:1
  • D:0

答 案:D

解 析:由已知条件函数f(x)=1+在(0,+∞)上是减函数,及对数函数的性质可得底数0

2、某学校为新生开设了4门选修课程,规定每位新生至少要选其中3门,则一位新生不同的选课方案共有 ( )

  • A:7种
  • B:4种
  • C:5种
  • D:6种

答 案:C

3、设α是三角形的一个内角,若,则sinα=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由题知0<α<兀,而,故,因此.

4、已知成等差数列,且为方程的两个根,则的值为()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由根与系数的关系得由等差数列的性质得

主观题

1、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积

答 案:

2、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

3、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

4、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.  

答 案:

填空题

1、设

答 案:-1

解 析:  

2、()

答 案:3

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里