2024年成考高起点《数学(理)》每日一练试题01月13日

2024-01-13 12:00:01 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题01月13日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b2=16,故双曲线方程为

2、已知直线l:3x-2y-5=0,圆C:,则C上到l的距离为1的点共有()

  • A:1个
  • B:2个
  • C:3个
  • D:4个

答 案:D

解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.

3、设甲:;乙:.则()

  • A:甲是乙的必要条件但不是充分条件
  • B:甲是乙的充分条件但不是必要条件
  • C:甲是乙的充要条件
  • D:甲既不是乙的充分条件也不是乙的必要条件

答 案:A

解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.

4、过点(-2,2)与直线x+3y-5=0平行的直线是()

  • A:x+3y-4=0
  • B:3x+y+4=0
  • C:x+3y+8=0
  • D:3x-y+8=0

答 案:A

解 析:所求直线与x+3y-5=0平行,可设所求直线为x+3y+c=0,将点(一2,2)带入直线方程,故-2+3×2+c=0,解得c=-4,因此所求直线为线为x+3y-4=0.

主观题

1、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c两两垂直  

2、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

3、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域  

答 案:

4、已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和

答 案:  

填空题

1、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()  

答 案:

解 析:由于a//b,故

2、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()

答 案:7

解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里