2024年成考高起点《数学(理)》每日一练试题01月12日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、已知
,则sin2α=()
答 案:D
解 析:
两边平方得
,故
2、给出下列两个命题:①如果一条直线与一个平面垂直,则该直线与该平面内的任意一条直线垂直②以二面角的棱上任意一点为端点,在二面角的两个面内分别作射线,则这两条射线所成的角为该二面角的平面角.则()
- A:①②都为真命题
- B:①为真命题,②为假命题
- C:①为假命题,②为真命题
- D:①②都为假命题
答 案:B
解 析:一条直线与平面垂直,则直线与平面内的任意一条直线垂直,故①为真命题;二面角的两条射线必须垂直于二面角的棱,故②为假命题,因此选B选项.
3、已知集合M =(2,3,5,a),N =(1,3,4,b),若M∩N=(1,2,3),则a,b的值为
- A:a=2,b=1
- B:a=1,b=1
- C:a=1,b= 2
- D:a=1,b=5
答 案:C
解 析:M∩N={2,3,5,a} ∩{1,3,4,6} ={1,2,3} 又因为M中无“1”元素,而有“a”元素,只有a=1
而N中无“2”元素,而有“b元素”,只有b=2
4、从点M(x,3)向圆
作切线,切线的最小值等于()
- A:4
- B:

- C:5
- D:

答 案:B
解 析:如图,相切是直线与圆的位置关系中的一种,此题利用圆心坐标、半径,求出切线长. 由圆的方程知,圆心为B(-2,-2),半径为1,设切点为A,
由勾股定理得,



当x+2=0时,MA取最小值,最小值为
主观题
1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得
AB=120m,求河的宽

答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
2、已知数列
的前n项和
求证:
是等差数列,并求公差和首项。
答 案:
3、已知等差数列前n项和
(Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
答 案:
4、已知直线l的斜率为1,l过抛物线C:
的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为
,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
填空题
1、不等式
的解集为()
答 案:
解 析:


2、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()
答 案:7
解 析:由题可知长方体的底面的对角线长为
,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为