课程
题库
分享到空间
分享到新浪微博
分享到QQ
分享到微信
2024年成考高起点《数学(文史)》每日一练试题01月03日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、设α是三角形的一个内角,若
,则sinα=()
答 案:D
解 析:由题知0<α<兀,而
,故
,因此
.
2、甲袋内有2个白球3个黑球,乙袋内有3个白球1个黑球,现从两个袋内各摸出1个球,摸出的两个球都是白球的概率是
答 案:C
解 析:由已知条件可知此题属于相互独立同时发生的事件,从甲袋内摸到白球的概率为P(A)=
乙袋内摸到白球的概率为
,所以现从两袋中各提出一个球,摸出的两个都是白球的概率为

3、不等式|2x-3|≤1的解集为()
- A:{x|1≤x≤2}
- B:{x|x≤-1或x≥2}
- C:{x|1≤x≤3}
- D:{x|2≤x≤3}
答 案:A
解 析:
故原不等式的解集为{x|1≤x≤2}
4、若函数f(x)=1+
在(0,+∞)上是减函数,则()
答 案:D
解 析:由已知条件函数f(x)=1+
在(0,+∞)上是减函数,及对数函数
的性质可得底数0
主观题
1、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为
,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.
f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
2、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积
答 案:
3、设椭圆的中心是坐标原点,长轴在x轴上,离心率
已知点P
到圆上的点的最远距离是
求椭圆的方程
答 案:由题意,设椭圆方程为
由
设P
点到椭圆上任一点的距离为 d,
则在y=-b时,
最大,即d也最大。

4、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.
答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积
填空题
1、不等式
的解集是()
答 案:
解 析:
或
或
2、任选一个不大于20的正整数,它恰好是3的整数倍的概率是()
答 案:
解 析:设n为不大于20的正整数的个数,则n=20,m为在这20个数中3的倍数:3,6、9、12、15、18的个数。 ∴m=6,∴所求概率=
温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!