2023年成考高起点《数学(理)》每日一练试题12月16日

2023-12-16 12:10:00 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考高起点《数学(理)》每日一练试题12月16日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:求cos可直接用公式cos a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,  

2、若()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:首先做出单位圆,然后根据问题的约束条件,利用三角函数线找出满足条件的a角取值范围  

3、给出下列两个命题:①如果一条直线与一个平面垂直,则该直线与该平面内的任意一条直线垂直②以二面角的棱上任意一点为端点,在二面角的两个面内分别作射线,则这两条射线所成的角为该二面角的平面角.则()

  • A:①②都为真命题
  • B:①为真命题,②为假命题
  • C:①为假命题,②为真命题
  • D:①②都为假命题

答 案:B

解 析:一条直线与平面垂直,则直线与平面内的任意一条直线垂直,故①为真命题;二面角的两条射线必须垂直于二面角的棱,故②为假命题,因此选B选项.

4、函数的定义域是()

  • A:{x|-3<x<-1}
  • B:{x|x<-3或x>-1}
  • C:{x|1<x<3}
  • D:{x|x<1或x>3}

答 案:D

解 析:由对数函数的性质可知,解得x>3或x<1,因此函数的定义域为{x|x<1或x>3}

主观题

1、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c两两垂直  

3、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

4、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

填空题

1、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()  

答 案:

解 析:由于a//b,故

2、的展开式是()

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里