2023年成考高起点《数学(理)》每日一练试题11月23日

2023-11-23 12:07:21 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考高起点《数学(理)》每日一练试题11月23日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法  

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:将院校看成元素,高中生看成位置,由重复排列的元素、位置的条件口诀: “元素可挑剩,位置不可缺”,重复排列的种数共有种,即将元素的个数作为底数,位置的个数作为指数.即:元素(院校)的个数为 3,位置(高中生)的个数为5,共有种。  

2、如果不共线的向量a和b有相等的长度,则(a+b)(a-b)=()  

  • A:0
  • B:1
  • C:-1
  • D:2

答 案:A

解 析:(a+b)(a-b)=

3、直线3x-4y-9=0与圆(θ为参数)的位置关系是

  • A:相交但直线不过圆心
  • B:相交但直线通过圆心
  • C:相切
  • D:相离

答 案:A

解 析:方法一: 圆心O(0,0),r=2,则圆心O到直线的距离为 0

4、某类灯泡使用时数在1000小时以上的概率为0.2,三个灯泡在使用1000小时以后最多只有一个坏的概率为()

  • A:0.008
  • B:0.104
  • C:0.096
  • D:1

答 案:B

解 析:已知灯泡使用1000小时后好的概率为0.2,坏的概率为1-0.2=0.8,则三个灯泡使用1000小时以后,可分别求得: P(没有坏的) P(一个坏的)故最多只有一个坏的概率为:0.008+0.096=0.104.  

主观题

1、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c两两垂直  

2、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值

答 案:(Ⅰ)函数的定义域为 (Ⅱ)  

3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

4、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

填空题

1、不等式的解集为()  

答 案:

解 析:

2、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()  

答 案:

解 析:原直线方程可化为交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里