2023年成考高起点《数学(理)》每日一练试题09月14日

2023-09-14 12:11:13 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考高起点《数学(理)》每日一练试题09月14日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、若甲:x>1,乙:则  

  • A:甲是乙的必要条件,但不是乙的充分条件
  • B:甲是乙的充分必要条件
  • C:甲不是乙的充分条件,也不是乙的必要条件
  • D:甲是乙的充分条件,但不是乙的必要条件

答 案:D

解 析:故甲是乙的充分条件,但不是必要条件

2、从点M(x,3)向圆作切线,切线的最小值等于()  

  • A:4
  • B:
  • C:5
  • D:

答 案:B

解 析:如图,相切是直线与圆的位置关系中的一种,此题利用圆心坐标、半径,求出切线长. 由圆的方程知,圆心为B(-2,-2),半径为1,设切点为A, 由勾股定理得, 当x+2=0时,MA取最小值,最小值为  

3、若tanα=3,则

  • A:-2
  • B:
  • C:2
  • D:-4

答 案:A

解 析:

4、已知α∩β=a,b⊥β,b在α内的射影是b’,那么b'和α的关系是()

  • A:b'//α
  • B:b'⊥α
  • C:b'与α是异面直线
  • D:b'与α相交成锐角

答 案:B

解 析: ∴由三垂线定理的逆定理知,b在α内的射影b'⊥α,故选B  

主观题

1、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域  

答 案:

2、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

4、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

填空题

1、设离散型随机变量的分布列如下表,那么的期望等于()  

答 案:5.48

解 析:=6×0.7+5.4×0.1+5×0.1+4×0.06+0×0.04=5.48

2、不等式的解集为()  

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里