2023-09-10 11:58:42 来源:吉格考试网
2023年成考高起点《数学(理)》每日一练试题09月10日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、在△ABC中,若b=,c=则a等于()
答 案:B
解 析:此题是已知两边和其中一边的对角,解三角形时,会出现一解、两解、无解的情况,要注意这一点.用余弦定理可得解出
2、设甲:;乙:.则()
答 案:A
解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.
3、5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法
答 案:C
解 析:将院校看成元素,高中生看成位置,由重复排列的元素、位置的条件口诀: “元素可挑剩,位置不可缺”,重复排列的种数共有种,即将元素的个数作为底数,位置的个数作为指数.即:元素(院校)的个数为 3,位置(高中生)的个数为5,共有种。
4、已知直线l:3x-2y-5=0,圆C:,则C上到l的距离为1的点共有()
答 案:D
解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.
主观题
1、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c两两垂直
2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此
3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当时,f'(x)
4、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m
填空题
1、设离散型随机变量的分布列如下表,那么的期望等于()
答 案:5.48
解 析:=6×0.7+5.4×0.1+5×0.1+4×0.06+0×0.04=5.48
2、不等式的解集为()
答 案:
解 析: