课程
题库
分享到空间
分享到新浪微博
分享到QQ
分享到微信
2025年成考高起点《数学(文史)》每日一练试题04月21日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、在四边形ABCD中,
=()。
答 案:A
2、与圆x2+y2=4关于点M(3,2)成中心对称的曲线方程是()
- A:(x-3)2+(y-2)2=0
- B:(x+3)2+(y+2)2=0
- C:(x-6)2+(y-4)2=0
- D:(x+6)2+(y+4)2=0
答 案:C
解 析:与圆关于点M成中心对称的曲线还是圆.只要求出圆心和半径,即可求出圆的方程.圆X2+y2=4的圆心(0,0)关于点M(3,2)成中心对称的点为(6,4),所以所求圆的圆心为(6,4),半径与对称圆的半径相等,所以所求圆的方程为(x-6)2+(y-4)2=4。
3、6本不同的语文书和4本不同的数学书,任意排放在书架上,则4本数学书放在一起的概率是()。
答 案:C
解 析:此题属于等可能事件的概率(即古典概率),6本不同的语文书和4本不同的数学书任意排放在书架上的排列数就为基本事件的总数
4本数学书排在一起的排列数为
,所以4本数学书放在一起的概率为
,故应选C。
4、如果点(2,一4)在一个反比例函数的图像上,那么下列四个点中也在该图像上的是()
- A:(一2,4)
- B:(一4,一2)
- C:(一2,一4)
- D:(2,4)
答 案:A
解 析:设反比例函数为
,点(2,-4)在反比例函数的图像上,因此有
,解得k=-8,故反比例函数
,当x=-2时,y=4,故选A在该图像上.
主观题
1、已知F是椭圆
的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.
(Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.
答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距
即椭圆的右焦点F的坐标为
(4.0).
如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点,
【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.
2、已知am=
,an=
,求a3n-4m的值。
答 案:
3、设
(0<α<π),求tanα的值。
答 案:
4、已知直线l的斜率为1,l过抛物线C:
的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为
,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
得
设A(x1,y1).B(x2,y2),则
因此
填空题
1、5个同学站成一排,其中某个人恰好站在排头的概率是______。
答 案:
解 析:基本事件的总数n=5!,其中某人恰好站在排头的排法有m=4!种,所求概率为
。
2、已知sin2θ+1=cos2θ,则
的值等于______。
答 案:
解 析:由已知,cos2θ-sin2θ=1,即cos2θ-(1-cos2θ)=1,cos2θ=1,所以cosθ=±1。 而当cosθ=±1时,sinθ=0。
温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!