2024年成考高起点《数学(理)》每日一练试题12月23日

2024-12-23 12:13:17 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考高起点《数学(理)》每日一练试题12月23日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、若f(x)为偶函数,且在(0,+∞)为增函数,则下列不等式成立的是()。

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:

2、下列函数中,为奇函数的是()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:当f(-x)=-f(x),函数f(x)是奇函数,只有选项B符合.

3、在△ABC中,已知a=,b=,c=,则()。

  • A:∠A<∠B<∠C
  • B:∠A>∠B>∠C
  • C:∠A<∠C<∠B
  • D:∠A>∠C>∠B

答 案:C

解 析:由已知a=,b=,c=可知a

4、设f(x)是以7为周期的偶函数,且f(-2)=5,则f(9)=()。

  • A:-5
  • B:5
  • C:-10
  • D:10

答 案:B

解 析:因为f(x)是偶函数,所以f(2)=f(-2)=5,又因为f(x)是以7为周期的函数,则f(9)=f(7+2)=f(2)=5。答案为B。

主观题

1、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

2、已知数列{an}中,a1=2, (Ⅰ)求数列{an}的通项公式; (Ⅱ)求数列{an}前5项的和 S5

答 案:解:

3、空间有四个点,如果其中任何三点不在同一直线上,可以确定几个平面?  

答 案:根据公理,在所给定的四点中任取三点,可确定一个平面,由组合公式所以共可确定四个平面。

解 析:空间有n个点,如果其中任何三点不在同一直线上,可以确定个平面。  

4、设A1A2A3A4A5A6为正六边形,如图 ,O为它的中心。 (1)求证: (2)

答 案:已知A1A2A3A4A5A6 为正六边形,即|A1A2|=|A3A4|=......|A6A1|.要证6个向量的和为0.只需证其中3个向量与另3个向量的长度相等、方向相反即可.

填空题

1、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()

答 案:7

解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为

2、y=ax2-bx+c的导数y'|x=1=______。

答 案:2a-b

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里