2024年成考高起点《数学(理)》每日一练试题12月18日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、函数y=sin(x+11)的最大值是()。
答 案:B
解 析:本题主要考查的知识点为三角函数的值域。 因为-1≤sin(wx+q)≤1,所以-1≤sin(x+11)≤1,故y=sin(x+11)的最大值为1。
2、已知集合M =(2,3,5,a),N =(1,3,4,b),若M∩N=(1,2,3),则a,b的值为
- A:a=2,b=1
- B:a=1,b=1
- C:a=1,b= 2
- D:a=1,b=5
答 案:C
解 析:M∩N={2,3,5,a} ∩{1,3,4,6} ={1,2,3} 又因为M中无“1”元素,而有“a”元素,只有a=1
而N中无“2”元素,而有“b元素”,只有b=2
3、若
,则必有()。
- A:sinα>sinβ
- B:cosα>cosβ
- C:tanα>tanβ
- D:cotα>cotβ
答 案:A
解 析:
是函数,故当
时,
4、圆
的圆心在()点上
- A:(1,-2)
- B:(0,5)
- C:(5,5)
- D:(0,0)
答 案:A
解 析:因为
所以圆的圆心为O(1,-2)
主观题
1、设函数
(1)求
;(2)求函数f(θ)最小值。
答 案:
2、已知直线l的斜率为1,l过抛物线C:
的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为
,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
3、当自变量为何值时,函数y=2x3-3x2-12x+21有极值,其极值为多少?
答 案:y'=6x2-6x-12=6(x-2)(x+1) 当x<-1或x>2时,y>0,当-1 故当x=-1时有极大值,其值为f(-1)=28 当x=2时有极小值,其值为f(2)=1
4、某气象预报站天气预报的准确率为80%,计算(1)5次预报中恰有4次准确的概率; (2)5次中至少有次准确的概率.(计算结果保留两个有效数字).
答 案: 把每次预报看做一次试验,“预报结果准确”看成事件P(A)=0.8,本题就相当于在5次独立重复试验中求A恰好发生4次(或至少4次)的概率,此题属于独立重复试验,由公式
来求解。 (1)n=5;p=0.8;k=4
即恰有4次准确的概率为0.41.
(2)5次至少有4次准确的概率,就是5次中恰有4次准确的概率与5次预报中都准确的概率的和,即
即至少有4次准确的概率为0.74。
填空题
1、在△ABC中,a=2,b=
,∠B=
,则∠A=______。
答 案:
解 析:
2、点B(4,-5)按向量a平移后的对应点B0(-4,7),则a的坐标是______。
答 案:(-8,12)
解 析:由平移公式得-4=4+a1,7=-5+a2→a1=-8,a2=12 ∴a的坐标是(-8,12)。