2024年成考专升本《高等数学一》每日一练试题11月18日

2024-11-18 11:47:03 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考专升本《高等数学一》每日一练试题11月18日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设函数,在x=0处连续,则b=()。  

  • A:2
  • B:1
  • C:0
  • D:-1

答 案:B

解 析:因f(x)在x=0处连续,则有,故b=1.

2、函数的连续区间是()。

  • A:(∞,2)(2,1)(1,+∞)
  • B:[3,+∞)
  • C:(∞,2)(2,+∞)
  • D:(∞,1)(1,+∞)

答 案:B

解 析:函数在定义域内是连续的,故,得.故函数的连续区间为[3,+∞)。

3、设x是f(x)的一个原函数,则f(x)=()。

  • A:
  • B:
  • C:1
  • D:C(任意常数)

答 案:C

解 析:x为f(x)的一个原函数,则,等式两边同时求导,得

主观题

1、若,求a与b的值。

答 案:解:,又x3,分母x-30;所以,得9+3a+b=0,b=-9-3a,则(9+3a)=(x-3)[x+(3+a)],故a=0,b=-9。

2、求

答 案:解:

3、判断级数的敛散性。

答 案:解:令,则,由于故有当<1,即a>e时,该级数收敛;当>1,即a<e时,该级数发散。

填空题

1、设函数z=f(x,y)可微,(x0,y0)为其极值点,则()。

答 案:

解 析:由二元函数极值的必要条件可知,若点(x0,y0)为z=f(x,y)的极值点,且在点(x0,y0)处存在,则必有,由于z=f(x,y)可微,则偏导数必定存在,因此有

2、微分方程的通解为y=()  

答 案:

解 析:将微分方程变量分离,可得两边同时积分可得In|y|

3、若积分,则积分=()。

答 案:F(1nx)+C

解 析:,因为,所以令

简答题

1、  

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里